پیشبینی سطح ایستابی با استفاده از سریهای زمانی و سیستم استنباط فازیـ عصبی تطبیقی
چکیده
مدلسازی در مناطق خشک برای مدیریت بهینة منابع آب اهمیت ویژهای دارد. آب زیرزمینی از مهمترین منابع آبی در مناطق خشک محسوب میشود. هدف این پژوهش ارزیابی عملکرد سیستم استنباط فازی عصبی تطبیقی (انفیس) و مدلهای سری زمانی در پیشبینی سطح ایستابی است. در این پژوهش، با استفاده از مدلهای سری زمانی و مدل انفیس با توابع عضویت مختلف اقدام به پیشبینی یک ماه بعد سطح آبهای زیرزمینی دشت شیراز شد. بهترین ترکیب ورودی و طول دادههای آموزشی و صحتسنجی در مدل انفیس با استفاده از آزمون گاما و M برآورد شد. عملکرد مدلهای مختلف با پارامترهای خطا و دیاگرام تیلر مقایسه شد. نتایج مدل انفیس نشان داد که این مدل با تابع عضویت Π شکل عملکرد بهتری نسبت به بقیة توابع عضویت دارد (241/1 RMSE= و 953/0 MAE=). مقایسة عملکرد مدلها، حاکی از کارایی بسیار مناسب مدل خطی ARIMA (2,1, 2) نسبت به مدل انفیس با توابع عضویت مختلف است (325/0 RMSE= و 241/0 MAE=).
نویسنده : بهرام چوبین، آرش ملکیان، فرزانه ساجدی، امید رحمتیمدلسازی در مناطق خشک برای مدیریت بهینة منابع آب اهمیت ویژهای دارد. آب زیرزمینی از مهمترین منابع آبی در مناطق خشک محسوب میشود. هدف این پژوهش ارزیابی عملکرد سیستم استنباط فازی عصبی تطبیقی (انفیس) و مدلهای سری زمانی در پیشبینی سطح ایستابی است. در این پژوهش، با استفاده از مدلهای سری زمانی و مدل انفیس با توابع عضویت مختلف اقدام به پیشبینی یک ماه بعد سطح آبهای زیرزمینی دشت شیراز شد. بهترین ترکیب ورودی و طول دادههای آموزشی و صحتسنجی در مدل انفیس با استفاده از آزمون گاما و M برآورد شد. عملکرد مدلهای مختلف با پارامترهای خطا و دیاگرام تیلر مقایسه شد. نتایج مدل انفیس نشان داد که این مدل با تابع عضویت Π شکل عملکرد بهتری نسبت به بقیة توابع عضویت دارد (241/1 RMSE= و 953/0 MAE=). مقایسة عملکرد مدلها، حاکی از کارایی بسیار مناسب مدل خطی ARIMA (2,1, 2) نسبت به مدل انفیس با توابع عضویت مختلف است (325/0 RMSE= و 241/0 MAE=).
تعداد صفحه : 10
مشخصات فایل : 438KB / PDF
قیمت : رایگان