طراحى اينورتر منبع جريان جهت تغذيه كوره القايى

جواد علدائي
 ㄲn ..n . .

كارشناس ارشل دفتر فنى و مهنـلـى ادالره كل بروت و انرزى
.

جعغر ميلى منفرد

- - - - -

استاديار دانشكده برق دا نشغاه صنعتى اميركبير

- - - - - - - - - - - -

 ناحيه عملكرد مطمئن فركانسى آن متين گرديده اسِت

Design of Current Source Inverter for Induction Furnace

Jafar Mili Monfared, Ph. D.

Assistant Professor Elec. Eng. faculty Amirkabir Univ.

Javad Olamaie, M. Sc.
Tech. Office Elec. Department
Ministry of Jahad. e. Sazandegi

Abstract

In this paper design and basic operation of current source inverter to supply induction heating is discussed.

The load dynamic equations are developed and shown the load voltage and coil-current are sinusoidal in stable state. thus the inverter system is designed on this base. At last the effect of circuit parameters on the operation of inverter is discussed and a reliable operating region is established.

اساس اينورتر منبع جريان

شديلاً اندو كتيو هى باشلـ.

 كه در واقع زاويه آتش تريستور ولتـنـاز خروجمى مدار يكـيسو ساز ,

اصول اساسي ايني نوع أينورتر با توجه به مدأر ساده آن در شكل (() نشــان داده شـلده الست. اين نوع مـبــلـل از مــار

 جريان ورودى به أينورتر بوده و لذا أز أين ديـد بار ركتيفـاير

برایى طراحى إينورتر منبع جريان جهت تغـنـي
 مى تواند از اطلاعات داده شده ذيل بهدست آيد:
الف ـتوان اكتيو
 كويل كوره تبديل به حرارت مى گرددر. ب-توان راكتيو
به علت وجود حالت سلفى كوره، بار شديداً اند اندوكتيو بوده و توان راكتيـو مـصرف مى كند. برانى جـبـران توان

 نامى و ولتاز نامى تعريف مى شود. ج-فركانس خروجى از آنجـائى كـــهـ بار كــوره از نوع گــرهـايش كلى در نظر گرفته شـده است، تغييرات (through heating)
 بود، لذا اينورتر جريان برايى اين منظور انتخاب گرديد است. دـ وـولثازمنبع
در أينورترهاى منبع جريان، تغذيه DC همراه با با سلف صاف كننده
 بوده و شبيه حالت ديودى عمل مى كند .

با توجه به هطالب ذكر تـده مـدار معـادل بار مطابق شكل مكل r-b r-a

شكل() مداراساسى الينورترموأزي (منبع جريان)

منبع تغذيه DC همراه با سلف واسط به صورت يك منير ينب
 با آتش كـردن مـتناوب جـفت تريسـتـور هر هاى (2,1) و $(4,3)($

كار خروجى روشن خوأهد بود.

مشخصات خروجى اينورتر

 C

 است.

a (a نمودار كلي سيستم
(Y) شكل

تريستورهاى ت ب-b أصل مى گردد.

a

b) مدار, معادل وقتى كه دو تريستور S و و S هدايت مى كند. (i) شكل

فرض هى كنيم شرايط اوليه عبارتند از:
$\mathrm{i}\left(0^{+}\right)=\mathrm{I}_{0}$
$e_{c}\left(0^{+}\right)=-E_{0}$

در اينورتر منبع جـريان كه بار از خـازن و كـويل مـوازیى
 صر
 به دو سر بار اعمال گرديرد. حالل معادلات ديفـرانسـيل را بر اسـاس مدار مـعـادل باللا مى نويسيم لذا داريم:

استفاده مى گردد. هـل بهد دست آمده به صورت مـدار نوسانى ميراشونده ضعيف عـمل كرده و بار و توان كوره مستقل از از عملكرد اينورتر باقى خواههد ماند.

a

(M) شكل

معادلات ديناميك بار

 ديناميكى بار شرايط ذيل فرض مى گردد:

1 ـ تريـتـتـورها بهصـورت سـويحـهـاى ايدهآل عـمل می كنینـ.
 بهطورى كه منبع تغنـيه اينورتر را مى توان بها بهورت

منبع جريان مدل نمود.
r ـ ا از سلف di/dt صرف نظر مى گردد. شكل + + مدار ساده شده اينورتر را نشان مى دهد. اگر
$e_{c}\left(T / 2^{+}\right)=-e_{c}\left(0^{+}\right)=E_{0}$
(9)
(1.) $\quad i+\mathrm{Cde}_{\mathrm{c}} / \mathrm{dt}=\mathrm{I}_{\mathrm{D}}$
$\mathrm{Ri}+\mathrm{Ldi} / \mathrm{dt}=\mathrm{e}_{\mathrm{c}}$
$i\left(T / 2^{+}\right)=-I_{4} e^{-\left(\pi p^{\prime} / 2 \mathrm{O}\right)}+I_{10}\left[1+e^{-(\pi \mathrm{p} / 2 \mathrm{O})}\right]=-\mathrm{I}_{0}$
از معادلات (•1) (11) داريم:
$I_{1} / I_{D}=-\frac{1+e^{-(\pi \mathrm{p} / 2 \mathrm{Q})}}{1-\mathrm{e}^{-\pi \mathrm{p} / 2 \mathrm{Q})}}=-K$

$\mathrm{E}_{\mathrm{i}} / \mathrm{RI}_{\mathrm{D}}=\mathrm{K}$

 ساده تر می گردند در نتيجه داريم:
$\omega=\omega_{0}, \phi=\pi / 2, \mathrm{P}=1$

و از آنجا:
$\mathrm{K}=\frac{1+\mathrm{e}^{-(\pi / 2 \mathrm{Q})}}{1-\mathrm{e}^{-(\pi / 2 \mathrm{Q})}}$
از جاي گiارى متـادير روابط زير بهدست مىى آيد:
$i / I_{D}=1-e^{-(\omega N / 2 Q)}[(1+K) \cos \omega t+K / Q \sin \omega t]$
$\mathrm{e}_{\mathrm{c}} / R \mathrm{I}_{\mathrm{D}}=1-\mathrm{e}^{-(\omega / 2 Q)}(\mathrm{J}+\mathrm{K})[\cos \omega \mathrm{t}-\mathrm{Q} \sin \omega \mathrm{t}]$
براى نيم سيكل دوم در روابط بالا جـانى I با با مى گردد.

دسته معtدلات ديفرانسيلي بالا را مى توان به معادله ديفرانسيل زير تبلـيل نسود.

$$
\mathrm{CLd}^{2} \mathrm{i} / \mathrm{dt}^{2}+\mathrm{RC} \mathrm{di} / \mathrm{dt}+\mathrm{i}=\mathrm{I}_{\mathrm{D}}
$$

از حلى معادله ديفر انسميل بالا خواهيم داشت:

$$
\begin{align*}
\mathrm{i}=\mathrm{I}_{\mathrm{D}}-\mathrm{Pe}^{\left.-\left(\omega_{0}\right)^{v 2 \mathrm{Q}}\right)}-\left[\mathrm{I}_{0} \sin (\omega \mathrm{t}-\phi)\right. & +\mathrm{I}_{\mathrm{D}} \sin (\omega \mathrm{t}+\phi) \\
& \left.+\mathrm{E}_{0} / \mathrm{x} \sin \omega \mathrm{t}\right] \tag{9}
\end{align*}
$$

سیس هي توان e, , به دست آورد كه دأريم:

$$
\mathrm{e}_{\mathrm{c}}=\mathrm{RI}_{\mathrm{D}}-\mathrm{Pe}^{\left.-\left(\omega_{0}\right) t / 2\right)}\left[\mathrm{RI}_{\mathrm{D}} \sin (\omega \mathrm{t}+\phi)-\left[-\mathrm{E}_{0} / \mathrm{Q}\right.\right.
$$

$$
\left.\left.+x\left(I_{D}-I_{0}\right)\right] \sin \omega t-E_{0} \sin (\omega t-\phi)\right]
$$

كه در آن:

$$
\begin{array}{ll}
\omega_{0}^{2}=1 / \mathrm{LC} & \alpha=\mathrm{R} / 2 \mathrm{~L} \tag{1t}\\
\omega=\omega_{1}^{2} \alpha^{2} & \mathrm{P}=\omega_{0} / \omega \\
\mathrm{x}=\omega_{01} \mathrm{~L} & \mathrm{Q}=\omega_{0} \mathrm{~L} / \mathrm{R}
\end{array} \quad \phi=\arccos \left(\alpha / \omega_{11}\right) \text {, }
$$

از روابط بـه دست آهــه برا نــود كه شكل مـوج ولنــاز خـازن و جـريان كويل به مـورت
 هقدار R معادل تلفات كوره بستگیى دارد.
 $\omega t=\pi$ نيم سـيكل بیـدى نيـز بايد مـدار را حل جريان هنع
 به دست آورد. اين مقادير شرط نهايى بهدست آ ملده از روا بـط
قبلى خواهنل بود.
$\mathrm{i}\left(\mathrm{T} / 2^{+}\right)=-\mathrm{i}\left(0^{+}\right)=-\mathrm{I}_{17}$

شكل (今) دياكرام فاز ولتاز بر حسب جريان

dajres
$i_{0}{ }_{0}$
جريان خازن دإراى كمى اعوجاج مى باشـد كه هارمونيكهانى

 نمود. ولتــاثُ بار مىتواند با اسـتــفـاده از جــمع آثار اعــمــال هارمونيكهاى مختلف به بار و و مـحاسبه ولتار بار خازن و و كويل به دست آيد. از محاساسبات انجأم شده برایى كوره مورد نظر،

 ورودى به مدأر بار، امهدانس نشان داده شـده با n, LW برابر

مـوج ولتـاث بار و جـريان كـويل به حـالت
 اختلاف فاز بين آنها را بهدست آورد كه برأى كوره مورد نظر
 مى دهد كه بيانگ, پايدارى مدار به پأسخ ورودى است.

طراحى اينورتر

 و جريان كويل در حالت پايـدار مــار، سينوسى خـواهـا تحليل زير اين مطلب را به اثبات مىرسانـاند

 كويل كوره و خازن جبران ساز را نشان شكل مى توان دريافت جريان كون كيل صرفان از هان هارمونيك اون اول

a

b ورودى جربان موع
(هكل (ه)
$i_{1}=4 / \pi I \sin \omega_{\mathrm{T}} \mathrm{t}$
$\mathrm{v}_{\mathrm{C}}=(4 / \pi) I Z \sin \left(\omega_{\mathrm{T}} \mathrm{t}-\alpha\right)$
$v_{L D}=E-v_{C}$

در حالت پايدلر ولتارى روتى سلفـ نخواهيم داشت لذا دأريم:

$$
\begin{equation*}
\int_{0}^{\mathrm{T} / 2} \mathrm{v}_{\mathrm{LD}_{\mathrm{D}}} \mathrm{dt}=0 \tag{r0}
\end{equation*}
$$

و از آنجا مقدار بريان ورودى به اينورتر بهدست مى آيل: $I=\pi^{2} E /(8 Z \cos \alpha)$

حالل مى دانيم:

$$
\left\{\begin{array}{lr}
\mathrm{v}_{\mathrm{st}}=0 & 0<\omega_{\mathrm{T}}<\pi \tag{19}\\
\mathrm{v}_{\mathrm{s} 1}=-\mathrm{vc} & \pi<\omega_{\mathrm{T}} \mathrm{t}<2 \pi
\end{array}\right.
$$

از آنجـا مـاكزيمم ولتــاز مسـتـتــيم دو سـر تريسـتـور بهدست مى آيد:
$\mathrm{V}_{\mathrm{s}_{\mathrm{m}}}=(4 / \pi) \mathrm{IZ}$

كه برای كوره مورد نظر اين مقدار برابر • • • ا ولت بهد دست آهـه است.
ولتــاز، جـريان و زمــان را به ترتيب نســبـت به مـفــادير 1/ $\omega_{\mathrm{T}}, \mathrm{E} \omega_{T} \mathrm{C}, \mathrm{E}$

$$
\mathrm{V}_{\mathrm{S}_{\mathrm{mn}}}=\mathrm{V}_{\mathrm{S}_{\mathrm{m}}} / \mathrm{E}=\mathrm{A}
$$

$$
(r \cdot) \quad P Q>\frac{Q^{2}}{1+Q^{2}}
$$

أز شكل ب
افـزايث يافته و امیدانس نشان داده شـلـه با CW/ ا به همان

 ولتازٌ دو سر بار با تقريب بسيار خوبى سينوسى استي.

تحليل معلالات بار در هارمونيك اصلى

 رابطه بين ولتـاز ورودى و خـروجـي آن را به حـورت زير زير بيـان نمود:
$\mathrm{E}=0.9 \mathrm{~V}_{\mathrm{ms}} \cos \alpha$

كه در آن α زاويه آتش تريستور مى باشد.

$$
\begin{equation*}
Z_{a b}=\frac{R(1+J Q)}{(1-P Q)+J P}=Z<-\alpha \tag{rs}
\end{equation*}
$$

كه در آن:
$Z=R\left[\left(1+Q^{2}\right) /\left[(1-P Q)^{2}+P^{2}\right]\right]^{1 / 2}$
$\alpha=\operatorname{arctg}\left[P\left(1+Q^{2}\right)-Q\right]$
$\mathrm{Q}=\mathrm{L} \omega_{\mathrm{T}} / \mathrm{R} \quad \mathrm{PQ}=\omega_{T}^{2} \mathrm{LC}=\left(\omega_{\mathrm{T}} / \omega_{0}\right)^{2}$
$\mathbf{P}=\omega_{\mathrm{T}} \mathbf{R C}$
 داريم:
$P\left(1+Q^{2}\right)-Q>0$

نكل (A) ستخنى تنييرات زمان خاموشى نـبت به فر كانس

Q Q
 مقـدار nو نيز افزايش مى يابد.
$\mathrm{A}=\pi /(2 \cos \alpha), \omega_{\mathrm{T}} \mathrm{t}=\theta$
$B=\left[\left\{(1-P Q)^{2}+P^{2}\right\} /\left(1+Q^{2}\right)\right]^{1 / 2}$

در نتيجه داريم:
$\mathrm{di}, / \mathrm{d} \theta \quad \boldsymbol{\alpha} \quad \mathrm{L} / \mathrm{L}_{\mathrm{s}}$

محاسبه زمان غاموشى تويستور

 اين منظور زمان خـاموشى تريستور لذا بايد زمانى كه VI به صفر میرسد را با بهدست آوريم. $\pi \leq \omega_{\mathrm{T}} \mathrm{t}<2 \pi \quad \mathrm{v}_{\mathrm{S} 1}=0$

بدون درنظر گرفـتن زمـان همـيوشـانى (بيـن دو تريسـتور) خواهيم داشت:
$\sin \left(\omega_{\mathrm{T}} \mathrm{t}_{\mathrm{q}}-\alpha\right)=0$

در نتيجه:
$t_{4 \mathrm{n}}=\omega_{\mathrm{T}} \mathrm{t}_{9}=\boldsymbol{\alpha}$

و از آنجا مقدار تعيين زمان هم هوشانى محاسبه مى گردد.
 تريستور افزايش مى يابد، اين مسائله تا ما موقعى ادادامه مي يابد كه تأثير ω قابل صرف نظر كر كردن برد باشد. زمان خاموشى براى
 خاموشى تريستور با فركانس عبارت است ازه:
$\mathrm{t}_{9}=\left[\operatorname{Arctg}\left(\frac{\mathrm{L} \omega_{T}-\mathrm{L}^{2} \omega^{3} \mathrm{C}-\mathrm{R}^{2} \mathrm{C} \omega}{\mathrm{R}}\right)\right] / 2 \pi \mathrm{f}$

با فرض اينكه:

لذا داريم:
$\operatorname{tg} \alpha \geq 2 / \pi$

در اين حالت جريان
 لذا داريم:
$V_{L_{D}}=E-(4 / \pi) I Z \sin \left(\omega_{T} t-\alpha\right)$
$\mathrm{V}_{\mathrm{L}_{\mathrm{D}}}\left(\omega_{\mathrm{T}} \mathrm{t}_{1}\right)=0$

در نتيجه داريم:
$\omega_{\mathrm{T}} \mathrm{t}_{1}=\arcsin (1 / \mathrm{A})+\alpha$
$\Delta \mathrm{I}=\frac{1}{\omega_{T} L_{\mathrm{D}}} \int_{0}^{\omega_{0} \mathrm{~T}_{1}} V_{\mathrm{LD}_{\mathrm{D}}} \mathrm{d}\left(\omega_{\mathrm{T}} \mathrm{t}\right)=\frac{\mathrm{E}}{\omega_{\mathrm{T}} \mathrm{L}_{\mathrm{D}}}\left[\omega_{\mathrm{T}} \mathrm{t}_{\mathrm{I}}\right.$

$$
\left.+\mathrm{A}\left[\cos \left(\omega_{\mathrm{T}} \mathrm{t}_{1}-\alpha\right)-\cos \alpha\right]\right]
$$

از جاي گذارى مقادير E و و در رابطه بالا خواهيم داشت:
$\mathrm{L}_{\mathrm{D}} / \mathrm{L}=\frac{4}{\pi \mathrm{ABQY}}\left[\sin ^{-1}(1 / \mathrm{A})+\alpha\right.$
$\left.+\mathrm{A}\left[\cos \left(\sin ^{-1}(1 / \mathrm{A})\right)-\cos \alpha\right]\right]$

كه در آن:
$\mathrm{Y}=\Delta \mathrm{I} / \mathrm{I}$

از دو رابطه بالا رابطه (l () تبديل به رابطه زير مى شود:

$$
\begin{equation*}
2 \psi=\pi \mathrm{BQL} / 2 \mathrm{~L} \sin \alpha \tag{01}
\end{equation*}
$$

منحنى مشخصه زمان همهوشاني در شكل (11) نشان داده
شده است.

در زمان همهوشاني ماكزيمّ مقدار خود را داراست، و
 تريستور مى گردد. لذا در PQ=1 زمان مؤثر خاموشى تريستور

 يافتـه و قابـل صرف نظر كردن مى گردد. در در نهايت مقـــدار واقعى

$$
\mathrm{t}_{\mathrm{qn}}=\mathrm{t}_{\mathrm{qn}}-2 \psi
$$

محاسبه سلف صاف كننده جريان مستقيم

 مى نيمم مى باشد. كه در آنها

مورد تحليل قرار گرفته و با استفاده از آناليز حالت

 با خازن مدل شدهاست.

شكل(1 (1) نيز موجهاى بهدست آمده توسط برناهه را نشنـان

 را مى توان اين گونه بيان كرد:

> الفـ بعداز حالت گذرا مدار پا يدار مى گردد.

 خاموشى سازى محاسبه شده مى باشد.

Mcap شكل (() نتايج بهدست آمده از

منحنى هاى Ld براى 10\% رييل در شكل (IT) رسم شــده

(di/dt) محاسبه شدت تغييرات جريان بار رابطه (t (t) را مجدداً مى نويسيم: $\mathrm{i}_{\mathrm{s} 3}=(\mathrm{I}-\mathrm{i}) / 2$
 مى خواهد روشن شود، لذا بإيد برايى محاسبه تغييرات جرات جريان از
$\mathrm{di}_{3} / \mathrm{dt}=\left(2 \mathrm{IZ} / \pi \mathrm{L}_{\mathrm{s}}\right) \sin \left(\omega_{\mathrm{T}} \mathrm{t}-\alpha-\psi\right)$

كه مقدار آن در لحظه روشن شدن عبارت است از:
$\mathrm{dis} /\left.\mathrm{dt}\right|_{\mathrm{t}=0}=\left(2 \mathrm{IZ} / \pi \mathrm{L}_{\mathrm{s}}\right) \sin (\alpha+\psi)$
با در نظر گرفتن LS مناسب مى توان مقـدار di/dt را كنترل نـود.

M cap تحليل مدار با استفاده از بسته نرمافزارى

در اين قـسـمت مـدأر با اسـتـفـاده از بستــه نرم افـزارىى
بــكموتاسيون صحيح تريستور

عدم خاموشى سازى تريستور موجب اتصاي اتصال كوتان در در مدريار

 صورت می گيرد. براى اين منظور بايس بايستى نسبت

 اين شرايط زمان هم يوشانى نيز كاهش می يابي افزايش مقدار PQ موجب افزايش دامن امنه ونتار دو دو سر بار خواهد گرديد، لذا محـدوديت در انتخاب PQ PQ بالا وجود
 براى كاهش C بر در رييل ثابت مقدار مناسبى

 بهد دست مى دهد.

محلوده عملكرد مطمئن اينورتر
در طراحى اينورتر جهت تغذيه كوره القايى دو مسأله حائز اهميت مى باشد.
الفـ تغييرات بار

خاصيـت مغناطيسى فلزات آهنى موجب مى گردد فرآيند

 مدارات كنترل منظور نگردد، سيستم از حالت پايدار خخد خارج خواهد شد.

جلول ا ـ ناميه عملكرد مطمنن

Q,hac	PQ,lan	$\mathbf{V}_{\text {suln }}$
$3-5$	$1.20-1.22$	$2.2-2.6$
$5-8$	$1.15-1.20$	$2.2-3.2$
$8-12$	$1.10-1.15$	$2.2-3.2$
$12-19$	$1.07-1.10$	$2.0-3.2$

روش الرائه شــده جـهـت طراحتى در عـيـن ســاده بودن بر

 بايد سيستم كنترل بتواند چنین تمهيدى را صورت دهـر دهـ

1- "Latest developements in static high frequency power sources for induction heating", by B. R. Pelly, IEEE Trans. Ind. Electron. Contr. Instrum., Vol. IECI. 17, No. 4 June 1970, pp. 297312.

2- "A high frequency power supply for induction heating and melting" by George Havas \& R. A. Sommer, IEEE.
2'- "A thyristor inverter for medium-frequency induction heating" by K. B.zhao, IEEE trans-
actions on industrial electronics, Vol. IE-31, No. 1, February 1984.
3- "A static power supply for induction heating" by J. P. Landis.

4- "Practical design considerations for inverter drives" by cariton E. Graf. IEEE transactions on industry applications, Vol. IA-9, No. 5, September/October 1973.
5- "Application of thyristor inverters in induction heating and melting" by S. N. Okeke, Electronics
\& power, Vol. 24, P. 217-221, March 1978.
6- "Current-fed inverter for induction heating" by \mathbf{M}. R. Roda, J. Inst. electron telecommun eng., Vol. 24, p. 81-85, 1985.
7- "New developments in high-frequency power sources "by william E.Frank, IEEE transactions on industry and general applications, Vol. IGA6, No. I, January/February 1970.
8- "The rating and application of SCRs designed for
power switching at high frequencies" by Raymond F. Dyer, IEEE transactions on industry and general applications, Vol. IGA-2, No. 1, Jan/Feb. 1966.

9- "Power electronics and applications" by Finny.
10- "Power electronics" by kjeld Thorborg, Prentice Hall.

11- "Electroheat I" / University of loughborough.

